Dedicated to state-of-the-art time-resolved research in biological and physical sciences. Learn More About BioCARS


BioCARS micro-spectrophotometer for on-line and off-line recording of optical absorption spectra of crystals, to aid X-ray diffraction studies. Learn More About Macromolecular Crystallography


BioCARS ps laser system: Spectra Physics, Ti:Sapphire Spitfire Pro 5 (780nm, 2ps, 1kHz, 5mJ/pulse) and TOPAS OP Learn More About BioCARS Laser Lab

Laser Lab

BioCARS 14 ID beamline provides necessary infrastructure for conducting state-of-the-art time-resolved X-ray scattering studies with 100ps time resolution, both in biology and in physical sciences. Learn More About 14 ID Beamline

14-ID Beamline

Laue diffraction pattern collected at 14 ID from a Scapharca Inequivalvis tetrameric hemoglobin crystal, as part of 100ps time-resolved studies. Learn More About Time Resolved Crystallography

Laue X-ray diffraction pattern

Our Mission

BioCARS is a national user facility for synchrotron-based, dynamic studies in structural biology and the physical sciences, located at Sector 14 of the Advanced Photon Source, at Argonne National Laboratory. BioCARS is an integral part of the multi-disciplinary Center for Advanced Radiation Sources (CARS) run by the University of Chicago.

The mission of BioCARS is to provide state-of-the-art X-ray and laser facilities, scientific and technical expertise and support to enable users to study the dynamic properties of biological, chemical and physical systems by X-ray scattering techniques such as time-resolved diffraction, SAXS/WAXS and fiber diffraction. Our emphasis on dynamic experiments is supplemented by the safe conduct of static experiments at the BSL2 and BSL3 biosafety levels. The overall goal of user experiments is to understand basic biological, chemical and physical processes in structural and dynamic terms, at the level of atomic resolution and on a time scale from picoseonds to seconds. Scientific problems addressed by BioCARS are fundamental to highly relevant biomedical problems, of practical importance to both pharmaceutical and biotechnological industries, and support advancements in the dynamic understanding of materials and basic energy sciences.

The technical expertise of BioCARS is in novel high X-ray flux, time-resolved pump-probe experiments. We are a unique beamline that specializes in the application of ultrafast laser science in conjunction with one of the world’s brightest X-ray sources; an X-ray pulse from the 14-ID beamline of BioCARS provides our users in the APS hybrid mode with a number of photons approaching that of a free electron laser such as the LCLS.

BioCARS operates two Experimental Stations, embedded in a Biosafety Level 3 (BSL-3) Facility. This BSL-3 synchrotron-based capability is unique in the United States and permits safe studies of biohazardous materials such as pathogenic human viruses.
*As of February 6, 2017, BioCARS facility is decommissioned as a BSL-3 laboratory. BioCARS is now approved for research up to the BSL-2 level.

Latest News and Highlights

Subscribe to Latest News and Announcements

Crystal-on-crystal chips for in situ serial diffraction at room temperature

(June 20, 2018) Recent developments in serial crystallography at X-ray free electron lasers (XFELs) and synchrotrons have been driven by two scientific goals in structural biology – first, static structure determination from nano or microcrystals of membrane proteins and large complexes that are difficult for conventional cryocrystallography, and second, direct observations of transient structural species in biochemical reactions at near atomic resolution.

Read the full post

New BioCARS Director, Prof. Rama Ranganathan

(December 2017) Distinguished biophysicist Rama Ranganathan joined University of Chicago as a professor in the Department of Biochemistry and Molecular Biology and Institute for Molecular Engineering. He is the new Director of BioCARS facility and will also lead the new Center for Physics of Evolving Systems at the University of Chicago.

Read the full post

Pink-beam serial crystallography

(November 2, 2017) Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, “pink”, beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources.

Read the full post

Science Careers in Search of Women Conference, Tour of BioCARS

(May 2, 2017) As in previous years, BioCARS participated again in the ANL-hosted annual Science Careers in Search of Women Conference this year (Click here for more).

Read the full post

BioCARS User Publication is One of 20 Most Read Articles in Structural Dynamics in 2016

(Feb 22, 2017) Time-resolved solution scattering studies of a homodimeric hemoglobin conducted at BioCARS 14-ID beamline linked the perturbation in the water cluster at the dimer interface to the kinetics and structures of intermediate states in this hemoglobin.

View on Structural Dynamics site

Read the full post

New Technique Shocks Proteins Into Action

(Dec 6, 2016) For a protein to carry out its job—whether it be replicating DNA, metabolizing fuel, transporting biomolecules, or sending cell signals—its amino acids have to move in certain ways. The patterns of these internal motions aren’t always well understood because the tools available to study them are limited.

Read the full post

Experimental Advance Offers First Glimpse of Biophysics of Vision

(May 6, 2016) In a groundbreaking experiment using the world’s fastest camera, a team of scientists led by the University of Wisconsin-Milwaukee documented the fundamental processes of a chemical reaction as they occurred in real time. This means seeing how proteins, the building blocks of life, work in a few quadrillionths of a second.

In a paper published May 5 in the journal Science, the researchers describe how they acquired images of the effect of light on a tiny crystallized protein.

Read the full post