BioCARS

Dedicated to state-of-the-art time-resolved research in biological and physical sciences.

Micro-spectrophotometer

BioCARS micro-spectrophotometer for on-line and off-line recording of optical absorption spectra of crystals, to aid X-ray diffraction studies.

Laser Lab

BioCARS ps laser system: Spectra Physics, Ti:Sapphire Spitfire Pro 5 (780nm, 2ps, 1kHz, 5mJ/pulse) and TOPAS OP

14-ID Beamline

BioCARS 14 ID beamline provides necessary infrastructure for conducting state-of-the-art time-resolved X-ray scattering studies with 100ps time resolution, both in biology and in physical sciences.

Laue X-ray Diffraction Pattern

Laue diffraction pattern collected at 14 ID from a Scapharca Inequivalvis tetrameric hemoglobin crystal, as part of 100ps time-resolved studies.

Update on Status at BioCARS, August 20, 2020

Dear BioCARS Users,
2020-3 cycle will start on October 1 and APS plans to move to Limited Operations Plus phase.

In this phase, mail-in/remote access experiments are supported and remain priority. Experiments proposed by users, who have prior APS experience, that cannot be performed remotely might be considered in exceptional cases, on a case-by-case basis, with no guarantee of approval. Contact apsuser@anl.gov for more information. For latest APS operational announcements, please check https://www.aps.anl.gov/Users-Information/Updates/APS-General-User-Programs-during-the-COVID-19-Pandemic.

Please contact BioCARS staff scientists contacts to discuss the compatibility of your experiments in this operations phase.

Our Mission

BioCARS is a national user facility for synchrotron-based, dynamic studies in structural biology, located at Sector 14 of the Advanced Photon Source, at Argonne National Laboratory. BioCARS is an integral part of the multi-disciplinary Center for Advanced Radiation Sources (CARS) run by the University of Chicago.

Structural biology at BioCARS is supported by the National Institute of General Medical Sciences of the National Institutes of Health under grant number P41 GM118217.

The mission of BioCARS is to provide state-of-the-art X-ray facility, scientific and technical expertise and support to enable users to study the dynamic properties of biological macromolecules by X-ray scattering techniques: time-resolved diffraction and solution scattering (SAXS/WAXS). In hybrid mode of the APS storage ring, BioCARS 14-ID beamline provides high polychromatic flux, with a number of photons per 100ps pulse approaching that of free electron lasers (such as the LCLS). Short X-ray pulses are synchronized with ps or ns laser pulses for conducting pump-probe time-resolved experiments. Laser pulses are used to initiate reactions in naturally photo-sensitive proteins or in other proteins that can be used with a suitable caged compound, and to initiate temperature or pH jumps. We are currently developing methods and technology for serial Laue micro-crystallography in order to facilitate studies of irreversible reactions while minimizing sample consumption. Another exciting field we are focusing on is the development of electric-field jump as a method for reaction initiation and studies of protein dynamics. The overall goal of time-resolved experiments our users conduct is to understand basic biological processes in structural and dynamics terms, on time scales from 100 picoseconds to seconds.

BioCARS operates two Experimental Stations, embedded in a Biosafety Level 3 (BSL-3) Facility. This BSL-3 synchrotron-based capability is unique in the United States and permits safe studies of biohazardous materials such as pathogenic human viruses.
*As of February 6, 2017, BioCARS facility is decommissioned as a BSL-3 laboratory. BioCARS is now approved for research up to the BSL-2 level.

Quick Links

Recent Publications

Ren, Z., Wang, C., Shin, H., Bandara, S., Kumarapperuma, I., Ren, M. Y., Kang, W., and Yang, X. (2020)
An automated platform for in situ serial crystallography at room temperature
IUCrJ 7
(abstract)

Henry, L., Panman, M. R., Isaksson, L., Claesson, E., Kosheleva, I., Henning, R., Westenhoff, S., and Berntsson, O. (2020)
Real-time tracking of protein unfolding with time-resolved x-ray solution scattering.
Structural Dynamics 7, 054702.
(abstract)

Kim, T. W., Lee, S. J., Jo, J., Kim, J. G., Ki, H., Kim, C. W., Cho, K. H., Choi, J., Lee, J. H., Wulff, M., Rhee, Y. M., and Ihee, H. (2020)
Protein folding from heterogeneous unfolded state revealed by time-resolved X-ray solution scattering.
Proc. Natl. Acad. Sci. U.S.A. 117, 14996–15005.
(abstract)

Kim, H., Kim, J. G., Muniyappan, S., Kim, T. W., Lee, S. J., and Ihee, H. (2020)
Effect of Occluded Ligand Migration on the Kinetics and Structural Dynamics of Homodimeric Hemoglobin.
J. Phys. Chem. B 124, 1550–1556.
(Abstract)

Thompson, M. C., Barad, B. A., Wolff, A. M., Cho, H. S., Schotte, F., Schwarz, D. M. C., Anfinrud, P., and Fraser, J. S. (2019)
Temperature-jump solution X-ray scattering reveals distinct motions in a dynamic enzyme.
Nat. Chem. 11, 1058–1066.
(Abstract)

Rimmerman, D., Leshchev, D., Hsu, D. J., Hong, J., Abraham, B., Henning, R., Kosheleva, I., and Chen, L. X. (2019)
Revealing Fast Structural Dynamics in pH-Responsive Peptides with Time-Resolved X-ray Scattering.
J. Phys. Chem. B 123, 2016–2021.
(Abstract)

Martin-Garcia, J. M., Zhu, L., Mendez, D., Lee, M.-Y., Chun, E., Li, C., Hu, H., Subramanian, G., Kissick, D., Ogata, C., Henning, R., Ishchenko, A., Dobson, Z., Zhang, S., Weierstall, U., Spence, J. C. H., Fromme, P., Zatsepin, N. A., Fischetti, R. F., Cherezov, V., and Liu, W. (2019)
High-viscosity injector-based pink-beam serial crystallography of microcrystals at a synchrotron radiation source.
IUCrJ 6, 412–425.
(Abstract)

Latest News and Highlights

High-viscosity injector-based pink-beam serial crystallography of microcrystals at a synchrotron radiation source

Martin-Garcia, J. M., Zhu, L., Mendez, D., Lee, M.-Y., Chun, E., Li, C., Hu, H., Subramanian, G., Kissick, D., Ogata, C., Henning, R., Ishchenko, A., Dobson, Z., Zhang, S., Weierstall, U., Spence, J. C. H., Fromme, P., Zatsepin, N. A., Fischetti, R. F., Cherezov, V., and Liu, W. High-viscosity injector-based pink-beam serial crystallography of microcrystals at a synchrotron radiation source. IUCrJ 6, 412–425 (2019)

read more
An Automated Platform for in Situ Serial Crystallography at Room Temperature

An Automated Platform for in Situ Serial Crystallography at Room Temperature

Direct observation of functional motions in protein structures is highly desirable for understanding how these nanomachineries of life operate at the molecular level. Because cryogenic temperatures are non-physiological and may prohibit or even alter protein structural dynamics, it is necessary to develop robust X-ray diffraction methods that enable routine data collection at room temperature. We recently reported a crystal-on-crystal device to facilitate in situ diffraction of protein crystals at room temperature devoid of any sample...

read more
BioCARS Starts a New Zoom Seminar Series

BioCARS Starts a New Zoom Seminar Series

During these times of COVID-19 restrictions, when most BioCARS users cannot travel to BioCARS to conduct their experiments, we deemed it essential to continue regular communications and scientific discussions with our user community. We decided to start BioCARS Zoom Seminar Series to share our user science as well as developments at our facility. We propose to include topics related to BioCARS experiments and results, both in time-resolved crystallography and X-ray solution scattering. But more broadly, we also welcome any general topics of...

read more